
Learning Weather Navigation Skills from Human
Pilots Demonstrations using Airborne Radar Data

Moslem Kazemi
Merlin Labs Inc.

Boston, MA, USA
Email: moslem.kazemi@merlinlabs.com

Alexander Naiman
Merlin Labs Inc.

Boston, MA, USA
Email: alex.naiman@merlinlabs.com

Abstract—Weather navigation is one of the essential capabil-
ities for building an autonomous flight navigation system. It is
a challenging task for human pilots that requires a great deal
of training, background knowledge, and experience. Manually
designing such knowledge into an autonomy system, if at all
possible, would require large engineering effort and painstaking
manual tuning to achieve human-level performance. In this
work, we frame weather navigation as an imitation learning
problem where human pilot demonstrations are used to learn
how to navigate a weather region. We adopt an inverse optimal
control formulation which seeks a cost function, i.e., a mapping
from weather features to a scalar value cost, under which
human pilot demonstrations are optimal. For a given weather
navigation problem, the learned cost function is used to generate
a costmap that in turn is used by a deterministic planner for
navigating the weather region. As a proof of concept we apply
this framework to a simplified problem of in-flight weather
navigation using airborne radar data. Through a number of
training and validation tests we demonstrate its effectiveness
in learning from human pilot demonstrations and producing
results that are comparable, and in some cases on par, with
that of human pilots in generating routes to navigate a variety
of weather scenarios. Although the simplified proof of concept
presented here focuses on using airborne radar data only, the
underlying approach is flexible, and we discuss the remaining
challenges and ways of extending it to include other sources of
weather data and achieve improved performance.1

I. INTRODUCTION

Weather navigation is one of the challenging tasks in avia-
tion. It requires a substantial amount of background knowledge
and it involves a number of critical decisions and actions
performed by the pilots for efficient and safe flights in the
presence of adverse weather conditions. It consists of a wide
spectrum of skills from data gathering and fusion, to inference,
reasoning, and avoidance strategies. Skilled pilots are highly
capable of performing these skills effectively and in a timely
manner where deemed relevant in different phases of a flight.

Weather navigation is an essential capability in autonomous
flight navigation systems to enable fully automated safe flight
under varying weather scenarios. The work presented here
discusses the challenges in designing and developing weather
navigation skills and devises a framework for learning such
skills from human pilots. Applying a learning-based approach
offers compelling advantages: for one it alleviates the burden

1Published and presented in Digital Avionics Systems Conference (DASC),
San Diego, CA, USA, September 2024

Fig. 1: Screenshot of an airborne weather radar display (source:
Adobe Stock)

of explicitly programming the skills to cover every contin-
gency, a task which is burdensome if at all possible. Moreover,
aviation guidelines do not always provide detailed guidance
on how to handle every possible weather scenario, leaving
those details to the pilot’s discretion. Learning from pilot
demonstrations offers an implicit way to learn such skills in
the absence of explicit rules and guidance. Finally, the skills
acquired through learning from demonstrations tend to be
more human-like and less robotic. This is not easily achievable
through programming heuristics or tuning cost functions.

We propose a framework for learning weather navigation
skills from human pilot demonstrations. In the proposed
framework, weather avoidance is framed as an inverse optimal
control problem that seeks a cost function, i.e., a mapping from
weather features to a scalar value cost, under which human
pilot demonstrations are optimal. The inverse optimal control
is implemented as a maximum margin structured prediction
problem, which has been successfully used in the past for
solving navigation problems in other domains [1]. For a given
weather navigation scenario, the system uses the learned cost

function to generate a costmap representing the traversability
of the space based on the observed weather features. We then
use a deterministic planner to search the costmap for the lowest
cost, i.e., optimal, route that efficiently traverses the space to
maneuver around adverse weather regions.

As a proof of concept we apply this framework to the prob-
lem of in-flight weather navigation using airborne radar data
(Fig.1). The training examples are obtained by asking pilots to
design and draw feasible routes on airborne radar images to
navigate example weather regions. We then demonstrate the
effectiveness of the approach by applying the cost mapping
learned from these examples to plan optimal routes for a test
set of examples. The proof of concept presented here focuses
on simple and relatively unrealistic scenarios. As a future
direction to this research, we allude to the flexibility of the
underlying approach and discuss the challenges of extending
it to real-world scenarios and ways to address them. We also
discuss how other data sources such as NEXRAD can be
leveraged to improve the learning process and achieve more
enhanced skills.

The outline of the paper is as follows: in the next section we
give an overview of the background and some of the related
work in this area. Then we provide the inverse optimal control
(IOC) problem formulation in Section III followed by the
details of the Maximum Margin Planning approach to solve
the IOC problem in Section IV. In Section V we explain
our process for gathering training data and we discuss the
results validating the performance of the proposed approach in
learning weather navigation from human pilot demonstrations
on a holdout test set. Finally, in Section VI we discuss some
of the challenges of extending this work to include other
sources of weather data and provide a few possible directions
to address those challenges as the future work.

II. BACKGROUND AND RELATED WORK

The work presented here spans a wide range of subjects in
aviation, weather navigation, robotics, autonomy, and imitation
learning. A thorough and complete review of each area and
its related work is beyond the scope of this paper. Here first
we focus on in-flight weather navigation, its challenges, and
existing strategies for autonomous generation of avoidance
maneuvers to navigate weather regions. Then we discuss
some of the main work in mobile robot navigation related
to the problem of route generation and challenges of gener-
ating routes in complex unstructured environments where the
mapping between the environment features and planning is
not trivial. We then review some of the strategies that focus
on learning this mapping through demonstration and, more
specifically, imitation learning.

Adverse weather can pose serious threats to the safety and
comfort of a flight, and will have to be detected and avoided
in a timely and safe fashion. During each phase of a flight,
pilots rely on multiple different sources to gather information
about the weather condition and aggregate such data to be able
to decide on any flight plan changes in response to changing
conditions. During the in-flight phase one of the main sources

of weather data is the airborne weather radar which helps
the pilots to assess the intensity of the convective weather
ahead. It enables them to strategize and decide on safe and
efficient maneuvers around adverse local conditions. Despite
recent technological advances in weather radar, pilots are still
required to perform most of the tuning and settings manually
to be able to correctly interpret the information shown by the
radar display. Besides the task of operating the radar features
such as tilt, range, gain control, and modes, pilots interpret the
intensity images shown on the radar display and accordingly
decide on a safe route to navigate the weather region. We
should note that pilots also rely on other sources of weather
information such as looking out the window, reports from other
pilots in the vicinity, ATC reports, and/or NEXRAD data. The
work here focuses on using airborne radar data only. However,
we will discuss the challenges of extending it to also automate
the radar features settings and use of other information sources
as future directions to this research.

Prior works on autonomous weather navigation are lim-
ited. Although there are a variety of tools and commercial
products offering aviation weather planning and visualization,
such as the ForeFlight weather tools [2], to the best of our
knowledge, there is no automated functionality for in-flight
dynamic (re)planning of safe routes around weather regions,
in particular based on airborne radar data. The closest we
came across is the Dynamic Weather Routes (DWR) tool
developed by NASA [3]. DWR is a ground-based automation
system that continuously and automatically analyzes in-flight
aircraft in en-route airspace to find opportunities for time-
and fuel-saving corrections to weather avoidance routes during
departure and overflights. The focus of the tool is on saving
time and fuel, and starting with the original flight plan it uses
the direct route as a ”reference route,” and inserts up to two
auxiliary waypoints as needed to find a minimum-delay route
correction that avoids the weather, or optionally weather and
traffic conflicts, and returns the flight to its planned route at
the downstream fix. The DWR was later extended in [4] to
improve arrival traffic flow as well.

Autonomous navigation is a well studied subject in robotics
with decades of research that has resulted in successful im-
plementation of some of those promising ideas in real world
applications such as self-driving cars. Autonomous navigation
in unstructured and complex environments is still a challeng-
ing task despite many advances in perception, for obtaining
environment features, and planning, for generating plans to
traverse the environment given the features extracted by the
perception system.

The coupling between perception and planning is one of the
biggest challenges in navigation. Usually the approach taken
is to encode and calculate a notion of traversability for every
location of the environment and use that to inform a planner to
traverse the space. Some earlier methods [5] rely on a binary
classification (traversable vs. non-traversable). However, such
classification was shown to be sub-optimal in dealing with
more complex environments where the critical differences
between features could be lost due to the binarization, hence

leading to sub-optimal plans.
The inadequacy of binary classification motivated the no-

tion of (continuous) navigation cost functions (e.g., [6]). A
cost function is a mapping from environment features to a
scalar cost value. The magnitude of the cost determines the
traversability of the space. The crux of the problem is then
to find the ideal mapping from the environment features to
cost value. This is a far harder problem compared to binary
classification. The richer the environment in terms of its
features, the bigger the challenge of designing a cost function
that adequately encodes and captures the complexity of the
environment in order to generate optimal and efficient routes.
Moreover, the problem gets even harder when it is desired
for the solution route to optimize different metrics (e.g., travel
distance, safety, risk, time, speed). In a navigation problem
it may be desired that the metric getting optimized is a
combination of two or more of such metrics and finding the
proper balance between them when shaping the cost function
remains a challenge.

Over the years a number of techniques have been proposed
for shaping and computing navigation cost functions. The
reader is encouraged to refer to [7] for a detailed and extensive
review of these techniques. Majority of these approaches rely
on manual design and tuning of cost functions and use of engi-
neering techniques to shape the cost function. Techniques us-
ing physical simulation, supervised classification, and learning
from experience have alleviated some of the tedious aspects of
manual tuning and engineering of the cost functions. However,
the success of these techniques have been limited and they
tend to be not easily extendable to wide variety of navigation
problems and robotic systems. These challenges motivated a
class of approaches known as imitation learning that try to
learn to directly map perception to actions through learning
from human demonstrations. Imitation learning techniques rely
on the fact that the correct action is known to the human
experts even though it may be very difficult to quantify the
rationale for their actions. Therefore, rather than having an
expert to manually tune the cost function the expert can
demonstrate the correct action and the robot can tune itself
in order to match the expert demonstrations.

For the purpose of this work, here we focus on a group of
imitation learning methods that are rooted in the concept of
Inverse Optimal Control (IOC) [8]. In contrast with optimal
control methods where the objective is to find a trajectory that
optimizes a known metric, IOC aims at finding a metric that
explains a given trajectory that is optimal with respect to that
metric. The metric could be either a reward function (as in a
reinforcement learning setup) or a cost function (as in a plan-
ning problem on a costmap). Inverse reinforcement learning
[9], and its successor, apprenticeship learning [10], are two
applications of IOC in the framework of Markov Decision
Process. Later on Maximum Marching Planning (MMP) [11]
addressed some of the shortcomings of apprenticeship learning
by producing a single deterministic solution and ensuring that
the mismatch between planned and demonstrated behavior are
bounded. MMP has been successfully used for mobile robot

(a) (b)
Fig. 2: An example of weather navigation using airborne radar
intensity images: (a) an example radar intensity image (source: Adobe
Stock) with the current and goal locations of the airframe depicted
in green and red, respectively, (b) a viable planned route (cyan) from
the current to the goal location

navigation in unstructured environments and off-road driving
[1].

In this work as a proof of concept we apply the MMP
approach for learning how to navigate weather regions using
airborne radar data. To the best of our knowledge this is
the first application of MMP to solve an aviation navigation
problem. Applying a learning-based approach, and particularly
MMP, offers compelling advantages: for one it alleviates the
burden of explicitly programming the skills to cover every
contingency, a task which is burdensome if at all possible.
Moreover, aviation guidelines do not always provide detailed
guidance on how to handle every possible weather scenario,
leaving those details to the pilot’s discretion. Learning from
pilot demonstrations offers an implicit way to learn such
skills in the absence of explicit rules and guidance. Also, the
skills acquired through learning from demonstrations tend to
be more human-like and less robot-like. This is not easily
achievable through programming heuristics or tuning cost
functions. MMP provides an extensible framework to add more
features, and allows using linear cost functions as well as non-
linear cost functions. Moreover, besides static scenarios it can
be applied to dynamic and unknown environments as well [12].
Finally, it allows relatively straightforward modifications (see
[1]) to make it more robust and improve its generalization in
the face of noisy or poor expert demonstrations.

III. PROBLEM DEFINITION AND FORMULATION

A. Imitation learning problem definition

The problem of navigating weather regions using airborne
radar data is defined as follows: given an image of weather
radar intensity (e.g., Fig.2) and the current location of the
ownship, find a safe and feasible route to reach a pre-
defined goal location. This problem statement is simplified
as compared to the real world problem. As mentioned earlier,
pilots also rely on other sources when deciding on a navigation
strategy. However, for the sake of this work we limit the
sources of weather information to airborne radar data only.
Also, we acknowledge that pilots also change and tune radar
settings such as tilt, range, and gain, to maintain a good

understanding of the weather region ahead. In the proposed
problem statement the radar intensity image is assumed to be
the best representation of the weather ahead after the pilot
manually changes and tunes the settings. We also focus on
2-D routing, though extension to 3-D would be relatively
straightforward. We discuss these assumptions and ways that
the current proof of concept can be extended to relax them in
Section VI.

The radar intensity image is usually shown as a 4 (and
sometimes 5)-color heatmap on the radar display[13]: black,
means there is no discernible return (i.e., no rain or rain is too
light to be detected); then green for weak return (i.e., light
rain); yellow for moderate return (i.e., moderate rain); red for
both strong and very strong return (i.e., heavy through extreme
rain); and some displays show magenta for extremely reflective
returns. Given a radar intensity image it is a relatively easy
task for the pilot to decide on a viable route to navigate it. We
treat each color as a feature used by the pilots for planning a
route to navigate the weather regions.

In order to automate route generation one commonly used
approach is to create a cost function from the discrete set of
features (e.g., a linear weighted cost) and evaluate the cost
at each point (pixel) of the discretized image to compute
a costmap. The magnitude of the cost at any point on the
costmap is a measure of its traversability in comparison with
the other points. In other words, regions of the costmap with
lower cost are preferable over regions with higher cost values.
Given the costmap, a deterministic planner, for example A*,
can be used to search for a minimum cost route through the
costmap.

As elaborated in the previous section, the main challenge is
to find the appropriate weighing used to combine the discrete
set of features into a scalar value cost function. In this work
we apply an inverse optimal control approach to learn the
cost function from human pilot demonstrations. The problem
then can be stated as follows: given a number of radar images
and the corresponding routes demonstrated by human pilots
the problem is to learn a cost function under which pilot
demonstrations are optimal.

B. Problem formulation

Here we provide a formal definition for the problem and
formulate the inverse control problem to be solved. The radar
intensity image (discretized into grid cells) defines the state
space S on which the planner operates to find a route (i.e.,
S = R2). The feature space F is defined over S, i.e, at every
state (grid cell) s in S there exists a feature vector Fs where Fs

is a 5-D vector, one dimension for each intensity level (black,
green, yellow, red, and magenta). Given a radar intensity image
the feature vector can be calculated for every state on the
intensity image. The cost function C is a mapping from the
feature space to the space of non-negative real numbers, i.e.,
C : F → R+. We adopt a linearly weighted cost function
C(Fs) = wTFs for this problem where w is the weight vector.
A route R in the state space is defined as a series of state from

the start s0 to the goal sg and the cost of a route is the sum
of the cost of features at each state along the route, i.e.,

C(R) =
∑
s∈R

C(Fs) =
∑
s∈R

wTFs (1)

We ask human pilots to use the radar intensity images
to demonstrate viable routes and then we split the recorded
demonstrations into our training and test data sets. Given a set
of routes, i.e., training examples, Re, demonstrated by human
pilots, the inverse optimal control problem to be solved is to
find the weight vector w under which the cost of each pilot
route is less than the cost of any other route planned for the
same navigation problem with the same start and goal states
as pilot route’s start and goal states, respectively, i.e.,

∑
s∈R̂

wTFs ≥
∑
s∈Re

wTFs

∀R̂ s.t. R̂ ̸= Re

(2)

In the next section we describe how Maximum Margin
Planning provides an intuitive and efficient way of finding
the weight vector under the above constraint.

IV. MAXIMUM MARGIN PLANNING

The Maximum Margin Planning [11] provides an iterative
algorithm for updating the weight vector in order to solve the
following optimization problem:

argmin
w

O(w) = λ||w||2+
∑
s∈Re

wTFs−
∑
s∈R∗

(wTFs−Le(s))

(3)
In the above equation λ||w||2 is a regularization term to

ensure simpler solutions, R∗ is the optimal route generated
by the (A*) planner using the current weight vector, and
Le is a loss function as a measure of similarity between
the example route and the optimal route. The loss function
gives more margin to planner routes that are dissimilar to the
example routes and also helps with avoiding trivial solutions,
i.e., w = 0 in Eq.2. We skip the details of how to derive the
above equation and refer the reader to [1] for the details.

Intuitively speaking, the above optimization problem aims
to reduce the difference between the cost of the example route
provided by the pilot and cost of the loss-augmented optimal
route generated by the deterministic planner based on the
current set of weights. To solve the optimization problem a
gradient descent approach can be used. However, as suggested
in [1] due to the non-convexity of Eq.3, instead of gradient
the sub-gradient below is used:

∇O = 2λw +
∑
s∈Re

Fs −
∑
s∈R∗

Fs (4)

which intuitively indicates that the direction that the objective
function O(w) is most minimized is along the difference in
feature counts between the example route and the optimal
route. In other words, when there are more (or less) of a feature

Fig. 3: A screenshot of AWRIA (Airborne Weather Radar Image
Annotator) web application built to facilitate radar image annotation
for generating training data

on the example route the weight for that feature is reduced (or
increased).

For detailed description and analysis of the MMP we refer
the reader to the original works [11] and [1]. The MMP
algorithm follows a gradient descent scheme to update the
weight vector iteratively: at each iteration i of the MMP the
sub-gradient in Eq.5 is calculated for all the training examples
(in a batch style for computational efficiency) and then the
weight vector is updated given a learning rate η:

wi = wi−1 − η∇O (5)

V. TRAINING AND VALIDATION RESULTS

In this section we describe the results of training and
evaluation of the MMP algorithm for solving various weather
navigation problems defined using radar intensity images.

A. Training and test datasets

We designed and developed a web-based application called
AWRIA: Airborne Weather Radar Image Annotator (see

Fig.3), through which pilots can easily iterate through radar
intensity images and annotate them by drawing routes and
adding comments, and when done export the results in image
and text formats.

To build a training dataset we searched for and downloaded
a set of 10 radar intensity images from various sources avail-
able on the internet. Figure 4 shows each image segmented
based on the color intensities (original images are not shown
for copyright reasons). After some minor clean-up we curated
them into a dataset for our test pilots to annotate using the
annotator app. We created 3 copies of each original image
and on each copy we specified a different goal location (with
the same start location in all images). In total we ended up
with 30 images each representing a unique weather navigation
problem: a radar intensity image, the start location, and the
goal location. Then using the annotator app one of our test
pilots annotated the 30 images by drawing a viable route
on each image and saving the results as new images with
routes overlaid. Some of the segmented images with the routes
annotated by our pilots are shown in Fig.5. The routes planned
by the human pilots are then used for training and validation
of the learned weight vector produced by MMP algorithm.

We sliced the 30 annotated images into two sets, a training
set of 20 images and the remaining as a test set containing 10
images. We left the test set aside for validation and we passed
the training set through our implementation of the MMP
algorithm. We used an image segmentation technique based on
HSV colorspace to segment each image into 5 colored features
which form the feature vector used by the MMP algorithm.
The output of MMP is the learned weight vector using which
a planner is expected to produce routes similar/close to human
pilot routes.

B. Evaluation and validation

In order to evaluate and validate the weight vector learned
by MMP, for each test image we generated a costmap using
the learned weight vector. We then ran an A* planner using the
generated costmap to find the optimal route from the respective
start to goal locations for that training example. Fig.6 shows
the routes (in red) generated using the weight vector learned
by the MMP algorithm along with the corresponding pilot
annotated routes (in cyan) on the costmaps (in grayscale)
learned by the MMP algorithm for each image.

C. Pilots evaluations and feedback

In order to evaluate the routes produced by the learned
weights we asked our test pilots to evaluate and provide
feedback on the routes generated by the planner using the
learned weight vector. In what follows we have categorized
their feedback into 3 main groups:

1) Unnecessary or too many heading changes: one major
feedback point was the fact that the learned routes make too
many heading changes and seemingly in some cases unneces-
sary ones. This result is not due to the learning process, but
is an artifact of using a greedy planner (A*) on a discretized
state space, i.e., a grid. The A* planner is implemented on

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)
Fig. 4: Example radar images segmented based on the color intensity levels: green, yellow, red, magenta

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)
Fig. 5: Segmented radar images annotated with routes (in cyan) by a human pilot using AWRIA app

a grid with 8-neighbor connection, making it restricted to
move only up, down, right, left, diagonally up-left/right, or
diagonally down-left/right. Consequently, the implemented A*
is not an any-angle planner [14] and this leads to sub-optimal
and zig-zag routes as is more clearly visible in some of the
figures in Fig.6, for example (h) and (i). Moreover, due to
the greedy nature of A* it makes frequent heading changes as
soon as a lower cost neighbor is immediately available. One
solution to this problem, and a future work to this research, is
to adapt an any-angle planner, e.g., Field D* [15] which uses
interpolation during each vertex expansion to find near-optimal
paths through regular, nonuniform cost grids. An intermediate
solution is to apply a post shortcutting step [16] to further
smooth the route by replacing segments of the route with
shorter/direct shortcuts with a slight, yet bounded, increase in

the overall cost of the route in some cases. The shortcutting
algorithm we implemented starts off from the beginning of
the route and tests whether any shortcut can be made to any
of the points along the route where a heading change has
happened. The search for the end point starts from the last
point on the route and moves backward. The condition for a
shortcut to be added is that the cost of the shortcut is less
(or up to a threshold larger) than the original segment of the
route being shortcutted. Where a shortcut is viable the route
gets updated with the shortcut and the algorithm continues to
run from the end point of the shortcut over the remaining of
the route proceeding the shortcut segment. The shortcutting
technique here is a brute force approach and continues until
the search for a shortcut reaches the end of the route and all
possible pairs of points (with heading changes) on the route

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)
Fig. 6: Validation results on the test dataset: pilot annotated routes (in cyan), the routes generated using learned weights (in red), and the
shortcutted version of the learned routes (in orange) overlaid on the learned costmaps shown in grayscale

are explored. In Fig.6 the shortcutted learned routes are shown
in orange. As shown and confirmed by our test pilot, there is
a noticeable reduction in the number of heading changes in
most cases (for example, compare red and oranges routes in
Fig.6(h), or 6(i)).

2) No safety buffer close to the danger zones: another
feedback from pilots was the fact that in some cases the
learned routes are skirting the boundary of red/magenta re-
gions and getting too close to the zones with adverse weather
(for example see the red/orange routes in Fig.6(e) where
they get very close to the red spots on the left side of the
image while the pilot route steered away). FAA guidelines
also advise to avoid by at least 20mi any thunderstorm that is
identified as severe or is giving an intense, heavy, or extreme
radar return [17]. This is due to the fact that while radar
returns provide information about precipitation, there are other
dangerous weather conditions not shown on radar that may
extend a few miles away from the edge of a strong radar return.
For example, strong updrafts and downdrafts associated with
convective systems and hazardous turbulence may extend to
as much as 20mi from the strong return edge. The lack of
buffer with respect to the danger zones is another artifact of
the greedy nature of the A* planner, but could also be an
indication for the lack of a feature as a measure of closeness
to danger zones so it can be learned from pilot routes. Eroding
(i.e., padding) the danger zones could be a temporary solution
to this problem. However, the principled way of handling this
is to add a feature to the feature vector Fs that measures the
distance to the closest red/magenta region from every state s.
Then the weight for this feature will be automatically learned
using the MMP framework without any extra work. This could
be a rather simple but effective improvement for the future
work.

3) Overly cautious routes: in a few cases it was observed
that the learned routes are overly cautious trying to avoid green
regions at the cost of increasing the length of the route (for
example see Fig.6(a)) or adding extra heading changes (for
example see Fig.6(b)(g)). In some cases this behavior is an
artifact of the imbalance between the length of the route and
the overall feature cost of the route. The shortcutting technique
suggested above would resolve some of these cases (e.g.,
Fig.6(b)). There is also the possibility that since in the training
examples there were not many instances of pilot routes going
through green/yellow regions the algorithm did not get much
opportunity for learning to lower the gains of the green/yellow
features further. Including more of such examples during the
training could help with verifying this hypothesis.

VI. CONCLUSIONS AND FUTURE WORK

The work presented here is a proof of concept for learning
weather navigation using airborne weather radar data. We
formulated the problem as an inverse control problem which
seeks to find a cost function that explains the training examples
provided by human pilots. We implemented and applied the
Maximum Margin Planning algorithm as an elegant way of
solving the optimization problem for finding the weighting
between the features encoded in radar intensity images. We
evaluated and validated the effectiveness of the proposed
framework on datasets consisting of radar intensity images
annotated in-house by our test pilots. The observations and
feedback received from the test pilots shed some light on
some directions the work here can be extended and improved
towards building a real-world weather navigation component
as part of an autonomous flight system, for example:

A. Including other sources of weather data

The MMP formulation enables adding more features as part
of its optimization framework. For example, as mentioned

earlier, in addition to airborne radar data, pilots make obser-
vations about the weather by looking out the window, as well
as receiving reports from other aircraft in the vicinity, ATC,
or NEXRAD. These can be added as features to the feature
vector defined at every state. The challenges for perceiving
and digesting such information into vectorized features is a
separate problem, and an essential pre-requisite.

B. Extension to routing in 3-D

Expanding this work to 3-D is rather straightforward. The
main challenge is to expand the state representation to 3-D
(instead of a 2-D grid) and calculate the feature values at each
3-D state during annotation and training. The MMP algorithm
does not make any assumption about the dimensionality of
the state space and the A* planner used here can be simply
extended to 3-D. The main challenge here is to create a 3-D
radar intensity image which requires operating the tilt feature
of the radar. In some more advanced radars (e.g., Honeywell
IntuVue RDR-4000) such a function is automated and can be
used to build a 3-D intensity image.

C. Dynamic planning and re-planning

We acknowledge the fact that in this work we treated the
radar data as static images. Although such an assumption
does not mesh with reality (due to weather changes, radar
setting changes performed by the pilot, or ownship motion)
the approach used here for learning the weights and building
the cost function is still applicable to real scenarios. However,
due to the dynamic nature of the weather and changes in the
state of the radar and/or the ownship it would not be practical
to generate a fixed route and stick to it for execution until the
end. Instead we envision a dynamic planning and re-planning
approach, i.e., receding horizon planning and execution. In
other words, at every cycle of planning and execution we
only execute a small part of the route and then in the next
cycle a new route is generated (with the most recently updated
information and state) and the execution continues on the new
route until the next cycle when a newer route is generated.
With such a scheme it can be ensured that at each cycle we
use the latest information based on the current state of the
environment and ownship.

D. Handling radar shadows

Another interesting future direction to this work is to look
into avoiding radar shadows, i.e., regions of the space behind
the severe weather regions where there is no reflectivity due
to high attenuation of the radar signal. Attenuation may exist
when a storm cell absorbs or reflects all of the radio signals
sent by the radar system. Attenuation may prevent the radar
from detecting additional cells that might lie behind the first
cell. Pilots are expected to have good understanding of radar
shadows when looking at the radar images and avoid routing
through them. Introducing a feature to denote such regions of
the radar image as forbidden (i.e., very costly) is a straight-
forward way to handle them in the optimization problem and
finding their appropriate weight in the cost function. Of course,

that is given that these regions can be detected and identified
on the images, which is an interesting research problem by
itself.

ACKNOWLEDGMENT

We are grateful to Merlin’s test pilots for their valuable
feedback and discussions and their help with generating train-
ing examples and evaluating the results. We would like also to
thank Merlin’s Advanced Capabilities Team for their feedback
during the research and development phases of this work.

REFERENCES

[1] Silver D, Bagnell JA, Stentz A., Learning from Demonstration for Au-
tonomous Navigation in Complex Unstructured Terrain, The International
Journal of Robotics Research, 2010;29(12):1565-1592.

[2] Foreflight Preflight & In-flight Weather Planning, https://foreflight.com/
products/foreflight-mobile/weather/

[3] McNally, D., Sheth, K., Gong, C., Love, J., Lee, C. H., Sahlman, S., and
Cheng, J. , Dynamic Weather Routes: A Weather Avoidance System for
Near-Term Trajectory Based Operations, 28th International Congress of
the Aeronautical Sciences, 23-28 September 2012.

[4] McNally, D., Gong, C., Lee, C. H., Dynamic Arrival Routes: A Trajectory-
Based Weather Avoidance System for Merging Arrivals and Metering,
15th AIAA Aviation Technology, Integration, and Operations Conference,
22-26 June 2015

[5] Olin, Karen E. and David Y. Tseng., Autonomous cross-country navi-
gation: an integrated perception and planning system, IEEE Expert 6
(1991): 16-30

[6] Stentz, A., Bares, J., Pilarski, T., and Stager, D., The crusher system for
autonomous navigation, In AUVSIs Unmanned Systems, 2007

[7] A. Hussein, M. M. Gaber, E. Elyan, and C. Jayne, Imitation Learning: A
Survey of Learning Methods, ACM Computing Surveys, vol. 50, no. 2,
pp. 1–35, 2017

[8] Kalman, R., When is a linear control system optimal?, Trans. ASME, J.
Basic Engrg., 86:51–60. 1964

[9] Ng, A. Y. and Russell, S., Algorithms for inverse reinforcement learning,
In Proc. 17th International Conf. on Machine Learning, 2000

[10] Abbeel, P. and Ng, A. Y., Apprenticeship learning via inverse reinforce-
ment learning, In International Conference on Machine learning, 2004

[11] Ratliff, N., Bagnell, J. A., and Zinkevich, M., Maximum margin plan-
ning, In International Conference on Machine Learning, 2006

[12] Silver, D., Bagnell, J. A., and Stentz, A., Perceptual interpretation for
autonomous navigation through dynamic imitation learning, International
Symposium on Robotics Research, 2009

[13] Trammell, A., Convective weather flying (2nd edition), course manual,
2017

[14] Nash, A., Koenig, S., Any-Angle Path Planning, AI Magazine, 34(4),
85-107, 2013

[15] Ferguson, D., Stentz, A., Field D*: An Interpolation-Based Path Planner
and Replanner, Proceedings of the International Symposium on Robotics
Research, 2005.

[16] Geraerts, R., Overmars, M. H., Creating high-quality paths for motion
planning, The International Journal of Robotics Research, 26(8), 845-863,
2007

[17] FAA-H-8083-28: Aviation Weather Handbook, Last updated: December
22, 2022

